

Heavy-ion induced molecular desorption: a review of three years of measurements at LINAC 3

Edgar Mahner CERN, AT Division, Vacuum Group

Outline

- Dynamic pressure rises at ISR and LEAR
- LEIR vacuum requirements
- Review of LINAC 3 desorption studies
- Desorption experiment at the SPS

13th ICFA Beam Dynamics Mini-Workshop Beam Induced Pressure Rise in Rings Brookhaven National Laboratory, December 9 - 12, 2003

CERN Intersecting Storage Rings (ISR)

pp collisions (26 GeV)

ISR vacuum system (1971)

Length: ~2 × 1 km (double ring) Average pressure: 10⁻⁹ Torr Material: stainless steel

Bakeout: 300°C

ISR design study (May 1964)

ISR pressure rise

First observation of "ion-induced" vacuum instability

The ISR pressure bump

Gas composition of a ISR pressure bump

O. Gröbner and R.S. Calder (1973)

Cure of the ISR pressure rise

Desorption yield depends on surface treatments

Dependence on bakeout temperature

Argon glow discharge cleaning (agdc) + *in-situ* bakeout at 300°C

Cure for the ISR: Improvement of the pumping system + reduction of desorption yield due to improved bakeouts and/or glow discharge cleaning

LEAR ring 1997

Ion-induced pressure rise during Pb^{54+} (4.2 MeV/u) accumulation in LEAR

- LEAR static vacuum: 5 × 10⁻¹² Torr
- Dynamic pressure rise up to 3×10^{-11} Torr, not understood
- Outgassing of vacuum equipment due to the impact of lost lead ions ?!

LHC requests: 9×10^8 ions, $\tau = 30$ s

Mechanism of beam-loss induced pressure rise in LEAR

LHC requirements for heavy ions The Pb Injector Chain

LEIR vacuum requirements

Basics: lifetime & gas density

• Beam lifetime

$$\frac{1}{\tau} = \beta \times c \times \sigma_{tot} \times n$$

-c: speed of light, n: gas density (independent of the gas species)

Gas density

$$-n \approx 9.656 \times 10^{24} \times p/T$$
 molec./m³
 p : pressure (Torr), T : temperature (Kelvin)

one finds at 20°C, 1 Torr: $n \approx 3.29 \times 10^{22}$ molec./m³

• Gas "mixture"

- replace
$$\sigma_{\text{tot}} \times n$$
 by $\Sigma \sigma_{\text{i}} \times n_{\text{i}}$

$$\frac{1}{\tau_{total}} = \frac{1}{\tau_{H_2}} + \frac{1}{\tau_{CH_4}} + \frac{1}{\tau_{CO}} + \frac{1}{\tau_{CO_2}} + \dots$$

Cross sections needed to calculate the gas density

Dynamic pressure

- Required dynamic gas densities *n* & partial pressures *P*
 - Charge-exchange of a heavy ions, capture & loss of electrons
 - the capture process dominates in LEIR

Gas	Franzke τ = 30 s n [m ⁻³]	Schlachter $\tau = 30 \text{ s}$ $n \text{ [m}^3 \text{]}$	Franzke τ = 30 s P [Torr] @ 20°C	Schlachter $\tau = 30 \text{ s}$ P [Torr] @ 20°C
H ₂ He CH ₄ H ₂ O N ₂ CO Ar CO ₂	$7.22 \times 10^{+11}$ $7.23 \times 10^{+11}$ $1.46 \times 10^{+11}$ $1.49 \times 10^{+11}$ $1.06 \times 10^{+11}$ $1.07 \times 10^{+11}$ $9.50 \times 10^{+10}$ $6.81 \times 10^{+10}$	2.71 × 10 ⁺¹³ 2.98 × 10 ⁺¹² 2.30 × 10 ⁺¹¹ 1.70 × 10 ⁺¹¹ 9.88 × 10 ⁺¹⁰ 9.88 × 10 ⁺¹⁰ 8.33 × 10 ⁺¹⁰ 6.26 × 10 ⁺¹⁰	2.20 × 10 ⁻¹¹ 2.20 × 10 ⁻¹² 4.45 × 10 ⁻¹² 4.54 × 10 ⁻¹² 3.23 × 10 ⁻¹² 3.24 × 10 ⁻¹² 2.89 × 10 ⁻¹² 2.07 × 10 ⁻¹²	8.24 × 10 ⁻¹⁰ 9.05 × 10 ⁻¹¹ 6.99 × 10 ⁻¹² 5.17 × 10 ⁻¹² 3.01 × 10 ⁻¹² 3.00 × 10 ⁻¹² 2.53 × 10 ⁻¹² 1.90 × 10 ⁻¹²

- Typical gas composition under heavy ion bombardment
 - Results from LINAC 3 desorption experiment: CO (72%), CO₂ (18%), CH₄ (7%), H₂ (3%).
- Required average dynamic pressure in LEIR
 - $-P_{\text{dynamic}}$ ≈ 3 × 10⁻¹² Torr!

Experimental setup at LINAC 3

Particles: $\sim 10^{10} \text{ Pb}^{27+} \text{ or } \sim 1.5 \times 10^9 \text{ Pb}^{53+}$

Repetition time: 1.2s

Impact angles studied: $\theta = 89.2^{\circ}$, 84.8° , 0° (perpend.)

Desorption yield measurements

 η : desorbed molecules/impacting ion

Single-shots

$$\eta_{eff,ss} = \frac{\Delta P \times V}{N_{Pb} \times k_B \times T} = G \times \frac{\Delta P \times V}{N_{Pb}}$$

$$\eta_{eff} = \frac{\Delta P \times S}{\dot{N}_{Pb} \times k_B \times T} = G \times \frac{\Delta P \times S}{\dot{N}_{Pb}}$$

 ΔP : partial pressure increase, V: volume, S: pumping speed

 $N_{\rm Ph}$: number of impacting ions, $N_{\rm Ph}$: flux of impacting ions

 $k_{\rm B}$: Boltzmann constant, T: temperature

 $G: \approx 3.2 \times 10^{19}$ at 300 K, converts (Torr $\times \ell$) into molecules

Review of LINAC 3 experiments 2001-2003

15 vacuum chambers built, 21 different surfaces tested Results presented for: 4.2 MeV/u, Pb⁵³⁺, Θ = 89.2°

Glow discharges, polishing

As received

Glow discharged: Ar-O₂, He-O₂

Chemical polishing: 50µm

Electropolishing: 50 μm, 150μm

Noble metal coatings

Galvanic coating: Au/Ni/ss (30 μm, 2 μm, ss)

Galvanic coating: Ag/Ni/ss (2 μm, 2 μm, ss)

Sputtering: Pd/ss (0.6 µm, ss)

Getter materials

Sputtered NEG: TiZrV/ss (2 μm, ss)

Getter strips St707: ZrVFe (70 μm)

Vacuum firing

Vacuum firing 1050°C ÷ 950 °C

 $304L (\underline{not} \text{ vac. fired}) \div 316 LN$

316 LN "getter purified"

Bakeout temperature 300°C ÷ 400 °C

Venting after beam scrubbing

Other materials Cu, Al, Si, Mo

LINAC 3 beam scrubbing review (1/8)

Standard' 316 LN ÷ Ar-O₂ & He-O₂ glow discharges ÷ sputter-coated NEG

Dose [ions/cm²]

LINAC 3 beam scrubbing review (2/8)

'Standard' 316 LN ÷ chemical etching ÷ electropolishing

LINAC 3 beam scrubbing review (3/8)

Effect of venting after 82h scrubbing

LINAC 3 beam scrubbing review (4/8)

Au ÷ Ag ÷ Pd films ÷ St707 getter strips ÷ sputter coated NEG

Dose [ions/cm²]

sputtered Pd

Surface morphology

Thickness: $e = 0.6 \mu m$

LINAC 3 beam scrubbing review (5/8)

"Total NEG pump" tested at LINAC 3

Strips spot welded on 950°C vacuum fired stainless steel cylinders *in situ* activation during bakeout: 350°C (24h) + 400°C (3h)

Very large pumping speeds(*):

 $S_{\rm H_2}$: 1000 l.s⁻¹.m⁻¹ $S_{\rm CO}$: 2000 l.s⁻¹.m⁻¹ $S_{\rm CO_2}$: 1500 l.s⁻¹.m⁻¹ $S_{\rm N_2}$: 450 l.s⁻¹.m⁻¹

(*)C. Benvenuti, P. Chiggiato, J. Vac. Sci. Technol. A14, 3278 (1996)

LINAC 3 beam scrubbing review (6/8)

Other materials: Cu, Al, Si/ss, Mo

Dose [ions/cm²]

LINAC 3 beam scrubbing review (7/8)

Cu & Al: partial pressures

LINAC 3 beam scrubbing review (8/8)

Si/ss & Mo: partial pressures

LINAC 3 review (1/3)

Pressure rise summary

LINAC 3 review (2/3)

Partial pressures from single shots

LINAC 3 review (3/3)

Impact angle & charge state

- Impact angle (89.2°/perpendicular) for 316 LN stainless steel Factor 2 reduced η at $\theta = 0^{\circ} \rightarrow$ saw-toothed absorbers
- Ion charge state (53+/27+) for 316 LN stainless steel Factor 10 reduced η at $\theta = 0^{\circ} \rightarrow$ no impact for LEIR

Conclusions from LINAC 3 studies

- Origin of LEAR vacuum degradation is understood
 - Measured (2×10^4) and calculated (7×10^4) desorption yields are in reasonable agreement
 - High dynamic gas loads can be reduced by scrubbing
- Stainless steel surface treatments & coatings
 - Electropolishing or chemical etching slightly reduces η
 - Sputter coatings (NEG, Pd) and galvanic coatings strongly reduce the η
 - Improvement factors α_i (\equiv reduced pressure rise compared to standard 316LN chamber):

```
\alpha_{\text{epolish}} \approx 2, \alpha_{\text{etch}} \approx 3, \alpha_{\text{Au}} \approx 15, \alpha_{\text{Ag}} \approx 16, \alpha_{\text{Pd}} \approx 76, \alpha_{\text{TiZrV}(200^{\circ}\text{C})} \approx 72, \alpha_{\text{TiZrV}(300^{\circ}\text{C})} \approx 333.
```

- No influence found on the following parameters
 - Vacuum firing at 950°C or 1050°C, *in situ* bakeout at 300°C or 400°C
 - Thickness of the noble-metal coatings: Au (30 μ m), Ag (2 μ m), Pd (0.6 μ m)
- What is not (or only partly) studied!
 - Dependence on: Energy, charge state, ion type, temperature...(SPS desorption experiment)
 - Contribution of electrons? Best choice of materials? Surface or bulk effect?
 - Is ion-induced track formation an issue for the pressure rise? (probably not)

Consequences for the LEIR vacuum system

- Beam scrubbing
 - Possibility is now demonstrated for Pb ions at 4.2 MeV/u
 - Factor 10 improvement of the dynamic pressure should be feasible
 - Recover as much as possible LEAR vacuum equipment and rely on scrubbing
 - But: scrubbing is lost after venting a sector!
- Installation of (low cost) absorbers to reduce LEIR scrubbing time
 - Absorbers: saw-toothed 316LN sheets coated with: TiZrV, Pd, Au, Ag
 - Positioned at locations were increased ion losses are expected
- NEG coating of all LEIR vacuum chambers
 - NEG coating (wherever possible) to get:
 Very clean surfaces after *in situ* bakeout
 Low dynamic gas load under heavy ion impact

Heavy-ion induced desorption data: Overview

Propoposed setup for dynamic outgassing tests of LHC-type graphite collimators with In⁴⁹⁺ at 158 GeV/u

⇒ Accelerator: SPS North Area (T4-H8)

⇒ Beam & Energy: ¹¹⁵In⁴⁹⁺ at 158 GeV/u

 \Rightarrow Intensity: 1.5×10^6 ions/spill

 \Rightarrow Beam size: $\leq 5 \times 5 \text{ mm}^2$

⇒ Impact angle: 35 mrad

Graphite collimator coatings with TiZrV and Cu

EST/SM: S. Calatroni, W. Vollenberg

AT Division, Vacuum Group Prepared by E. Mahner

Collimator alignment in CERN main workshop

Laboratory installation + first bakeout at 300 °C

Limit pressure 72h after 1st bakeout

 $P \approx 7 \times 10^{-12} \text{ Torr}$

Experimental setup installed in the SPS North Area

31. October 2003: Ready for beam!

Electron detectors installed in SPS desorption experiment

E. Page, J.-M. Laurent

E. Mahner, E. Efthymiopoulos, J. Hansen, E. Page

Pressure rise with indium ions at 158 GeV/u

Grazing angle: 35 mrad, Intensity: 1.5×10^6 ions/spill Cu (1.5 μ m)/Graphite

Pressure rise with indium ions at 158 GeV/u

Grazing angle: 35 mrad, Intensity: 1.5×10^6 ions/spill Cu (1.5 μ m)/Graphite

Pressure rise with indium ions at 158 GeV/u

Grazing angle: 35 mrad, Intensity: 1.5×10^6 ions/spill Graphite, TiZrV (1.5 μ m)/Graphite, 316 LN ss

$$\eta_{eff} = \frac{\Delta P \times S}{\dot{N}_{Pb} \times k_B \times T} \approx \Delta P \times 2 * 10^{17}$$

 ΔP : to correct, S: to measure, T: to calculate

PRELIMINARY desorption yields

Collimator	$\eta_{_{ m N2}}$ [molec./ion]
#1: Graphite	$\sim 6 \times 10^4$
#2: TiZrV/Graphite	$\sim 1.2 \times 10^5$
#3: 316 LN stainless steel	$\sim 4 \times 10^4$
#4: Cu/Graphite	$\sim 1.2 \times 10^5$

Heavy-ion induced desorption data: Overview

Acknowledgements AT, AB, EST, GSI, BNL collaboration

• LINAC 3 desorption studies

- C. Hill, D. Küchler, M. O'Neil, R. Scrivens, J. Broere, R. Hajdas, M. Chanel,
 C. Lacroix, D. Möhl, K. Schindl
- A. Lasserre, C. Benvenuti, S. Calatroni, P. Chiggiato, P. Costa Pinto, G. Favre,
 G. Jesse, M. Malabaila, M. Taborelli, T. Tardy, W. Vollenberg,
- D. Allard, J.P. Bertuzzi, I. Collins, O. Gröbner, N. Hilleret, J. Hansen, J.M. Laurent
- N. Madsen, K. Magyari, E. Page, J.P. Pasquet, S. Southern, P. Strubin

GSI & BNL collaboration

- M. Bender, O. Boine-Frankenheim, H. Kollmus, A. Krämer, H. Reich-Sprenger
- W. Fischer, H.C. Hseuh, S.Y. Zhang

• SPS desorption experiment

O. Aberle, G. Arduini, M. Chanel, E. Chiaveri, I. Efthyiopoulos, J. Genest
 J. Hansen, E. Page, K. Schindl